Club cells inhibit alveolar epithelial wound repair via TRAIL-dependent apoptosis.

نویسندگان

  • Khondoker M Akram
  • Nicola J Lomas
  • Monica A Spiteri
  • Nicholas R Forsyth
چکیده

Club cells (Clara cells) participate in bronchiolar wound repair and regeneration. Located in the bronchioles, they become activated during alveolar injury in idiopathic pulmonary fibrosis (IPF) and migrate into the affected alveoli, a process called alveolar bronchiolisation. The purpose of this migration and the role of club cells in alveolar wound repair is controversial. This study was undertaken to investigate the role of club cells in alveolar epithelial wound repair and pulmonary fibrosis. A direct-contact co-culture in vitro model was used to evaluate the role of club cells (H441 cell line) on alveolar epithelial cell (A549 cell line) and small airway epithelial cell (SAEC) wound repair. Immunohistochemistry was conducted on lung tissue samples from patients with IPF to replicate the in vitro findings ex vivo. Our study demonstrated that club cells induce apoptosis in alveolar epithelial cells and SAECs through a tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent mechanism resulting in significant inhibition of wound repair. Furthermore, in IPF lungs, TRAIL-expressing club cells were detected within the affected alveolar epithelia in areas of established fibrosis, together with widespread alveolar epithelial cell apoptosis. From these findings, we hypothesise that the extensive pro-fibrotic remodelling associated with IPF could be driven by TRAIL-expressing club cells inducing apoptosis in alveolar epithelial cells through a TRAIL-dependent mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H(2)O(2) inhibits alveolar epithelial wound repair in vitro by induction of apoptosis.

Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H(2)O(2) inhibited al...

متن کامل

Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation

Therapy that promotes epithelial repair whilst protecting against fibroproliferation is critical for restoring lung function in acute and chronic respiratory diseases. Primary human alveolar type II cells were used to model the effects of lipoxin A4in vitro upon wound repair, proliferation, apoptosis and transdifferention. Effects of lipoxin A4 upon primary human lung fibroblast proliferation, ...

متن کامل

HMGB1 Accelerates Alveolar Epithelial Repair via an IL-1β- and αvβ6 Integrin-dependent Activation of TGF-β1

High mobility group box 1 (HMGB1) protein is a danger-signaling molecule, known to activate an inflammatory response via TLR4 and RAGE. HMGB1 can be either actively secreted or passively released from damaged alveolar epithelial cells. Previous studies have shown that IL-1β, a critical mediator acute lung injury in humans that is activated by HMGB1, enhances alveolar epithelial repair, although...

متن کامل

Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing.

After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveo...

متن کامل

Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis.

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar woun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2013